尼龙吸水啊吸水,嗯嗯

脂肪族聚酰胺由于含有胺基和羰基,易与水分子形成氢键,因此所得到的各种材料在使用时容易吸水,产生增塑效应,导致材料体积膨胀、模量下降,在应力作用下发生明显蠕变等问题。聚己内酰胺和聚己二酸己二胺(尼龙6和尼龙66)是最常用的聚酰胺材料。它们最高能从潮湿空气中吸收质量分数10%的水分,在一般湿度环境下也能吸收质量分数2%4%的水分,导致各种力学性能变差。尼龙6和尼龙66两种材料在本文讨论范围内区别很小,统称尼龙6/66。本文总结了关于尼龙6/66吸水机理和改善其吸湿性的研究。主要内容如下:

1. 水分对尼龙6/66各性质的影响

1.1. 结晶度和晶体结构

1.2. 力学性能和分子运动

1.3. 尺寸变化

1.4. 热定型方法

2. 尼龙6/66吸水的机理

3. 解决尼龙6/66吸水问题的方法

3.1. 共混和复合

3.2. 交联

3.3. 表面改性

4. 总结

5. 参考文献

1. 水分对尼龙6/66各性质的影响

尼龙6/66吸水之后,多种性质将发生变化,而且许多性质的改变和吸水量有关系。

1.1. 结晶度和晶体结构

对尼龙6/66的晶体学研究发现,尼龙6/66都是半结晶性材料,成型后都含有晶区和非晶区。在晶区,分子链呈平面锯齿构象,通过酰胺键在链与链之间形成氢键1。在非晶区,分子链构象呈无规状,大多数酰胺键未相互形成氢键,呈“自由”状态,但不排除少数区域形成了局部的氢键。早期尼龙研究中结晶度常通过密度估算2。尼龙6/66的密度比水大。吸水后,这两种材料的密度均反而上升3,结晶度也上升4, 5。经过拉伸取向的尼龙6/66材料常含有部分γ-晶。研究发现,吸水后尼龙材料的γ-晶比例减少,而更稳定的α-晶比例增大6-8

1.2. 力学性能和分子运动

尼龙吸水之后在力学性能上的变化是明显的。最主要的特点是硬度、模量和拉伸强度下降、屈服点降低、冲击强度增加4, 5, 9-11

尼龙6/66的分子运动研究方法有核磁共振、动态力学松弛和介电损耗等方法研究尼龙6/66材料的转变发现,其玻璃化转变温度(Tg)对水分比较敏感,吸水之后,Tg大幅下降12-18。例如,尼龙6水含量为0.35%w/wTg =94°C10.33%w/wTg=-6°C19;干燥的尼龙66 Tg=78°C,当含水量为11%w/wTg=40°C15。同时发现,Tg随吸水量增加而下降的过程具有阶段性。起始下降迅速;当吸水质量分数超过一定值之后,下降缓慢19-21。综合各文献报道,该临界值约在2%~4%。尼龙6/66还在较低温度下表现βγ转变22,其中β转变只在潮湿的样品中观察到14, 22-24,且其强度随着吸水量的增加而增加16, 17, 25。有的研究还发现,β转变峰强度的增加伴随着γ转变峰的减少,并呈现类似Tg的阶段性26-28。以上现象均表明类似塑化的效果,然而当测试温度进一步降低,超过某临界温度后,水分在尼龙6/66材料中的作用就相反,类似交联硬化12, 29-32。这个临界温度的具体值在不同报道中相差较大,有人提出这与动态力学测试频率、样品的取向程度等条件的不同有关31

尼龙在长期受到小于屈服点的应力作用后,会发生硬化,这种效果称为“应力老化”(stress aging33, 34。在吸水后,应力老化的速率加快35, 36

1.3. 尺寸变化

尼龙6/66吸水后体积将发生膨胀。膨胀时,材料尺寸变化和吸水量变化并不完全同步。尼龙6纤维随着吸水量变化膨胀先快后慢37;而尼龙6薄膜则相反38, 39。经过拉伸取向的样品,膨胀具有各向异性。在拉伸取向的方向上膨胀较明显21, 30, 37。研究发现,尼龙6/66在拉伸作用下,其中的分子间氢键取向沿拉伸的方向靠拢21, 40, 41,因此认为,尼龙6/66吸水膨胀在沿分子间氢键的方向上比较明显。

1.4. 热定型方法

尼龙6/66纤维生产中有湿热定型和干热定型两种方法。研究发现,在结晶度相同的情况下,干热定型样品吸水量比湿热定型的少42。湿热定型的样品染色性能较好9

2. 尼龙6/66吸水的机理

尼龙吸水机理总结以往研究,目前基本认为水分子只进入尼龙6/66的非晶区域8, 10, 43, 44,吸水后分子链活动性增加,起塑化的作用37, 45-47。这是导致上节提到的晶型转变、Tg下降、出现新的松弛等现象的原因。

针对Tg及其他性质随吸水量增加而变化的过程呈现分段性的现象,PuffrŠebenda提出了尼龙6/66分步吸水的机理48,并被大量实验结果支持。该机理认为,水分子进入尼龙6/66无定形区,优先以左图1的形式结合(紧密结合,tightly bound),当水分子继续增多时,出现如左图中的2所示的结合形式(松散结合,loosely bound),更多的水分子将在分子间隙中通过水分子之间的氢键进一步堆积(clustering,如左图中的3所示)。上节提到的尼龙6/66在动态力学松弛20, 23、介电松弛26, 27, 45, 49, 50以及应力老化36等性质随吸水量变化的分段效应,正是P-Š分步吸水机理的体现。在疲劳裂纹生长51和断裂能52等性质上也发现了随吸水量变化的分段效应,可以用P-Š机理来解释。同时,宽线NMR吸收谱47, 53和弛豫时间54也发现尼龙6/66吸收的水分子中只有部分具有可活动性,说明其中含有结合程度不同的两类水分子。正电子湮灭寿命谱研究表明尼龙自由体积随吸水量的增加先下降后上升,也正好与P-Š机理相吻合。

对尼龙吸水的理论描述可用Flory-Huggins方程39, 55, 56Zimm方程57-59来描述(Zimm方程是Flory-Huggins方程的发展)。将这些理论与实验结果相比较的结果均支持了P-Š两步吸水的机理。另外,通过分子模拟的方法也支持了这一机理60

3. 解决尼龙6/66吸水问题的方法

由以上的总结可以知道,水对尼龙6/66材料的塑化效果很明显,而且在初始吸水阶段最敏感。仅靠保持干燥环境来保证尼龙6/66材料的性能比较困难。解决尼龙6/66吸水的问题有两类方法,一是通过降低吸水量来减少水分对其性能的影响;二是通过提高尼龙6/66的相关性能期望能抵消吸水的影响。

3.1. 共混和复合

添加酚醛树脂和聚乙烯基苯酚等含酚树酯能减少尼龙6/66的吸水量,提高其Tg,同时对Tm影响较小61-64。研究发现,添加的酚类物质主要存在于尼龙6/66的无定形区域。对于酚类物质的这种效果,研究者是这样解释的:水之所以能破坏尼龙6/66中业已形成的氢键而与羰基或胺基形成新的氢键,就是因为水分子与这羰基或胺基形成氢键的趋势比他们之间要高。酚基与羰基形成氢键的趋势比水分子更高,添加酚类物质之后,酚基占据了尼龙6/66中的羰基和胺基,并因其所含的苯环产生了位阻效应,阻止了水分子的进入65。通过等温吸附实验66SAXS67和分子模拟68的方法都支持了这种解释。

添加胺基聚醚(Blox69、磺化聚酯70或含芳聚酰胺71也能减少尼龙6/66的吸水量。尼龙6/66与其他高分子(如PP72, 73PS74PC75, 76ABS77等)共混一般只能减慢吸水速度,并不能降低吸水量。同时如果相容性不好,还会牺牲力学性能78

无机纳米粒子的效果也不明显79。例如添加粘土只能减慢吸水的速度80,不能减少平衡吸水量81。聚酸胺/层状硅酸盐纳米复合材料除具有所期望的增加和阻燃效果外,也能减慢吸水的速度,但不能减少平衡吸水量。关于聚酰胺/无机纳米复合膜对水蒸汽和氧气的阻隔性增加已有大量报道,这里不再一一引用。

以上的共混和无机纳米复合的方法虽然只能减慢吸水速度而不能降低吸水量,但是并不一定说明这些方法不能改善尼龙6/66因吸水而带来的不良后果。一方面,这些尼龙复合材料吸水后力学性能的下降和尺寸变化不一定像纯尼龙6/66那样明显;另一方面,上文引用的这些共混和无机纳米复合的报道在力学性能上均获得改善,如Tg、模量的提高等等,就算吸水之后力学性能又回落,也能相互抵消。但是目前还没有关于聚酰胺的共混或无机纳米复合材料的力学性能与吸水量(非吸水速率)之间关系的报道。

还有报道通过将尼龙6/66与吸湿性较低、力学强度较高的尼龙11粘合成层状复合材料,由于尼龙11的支架或限制作用,吸水后能保持尺寸和一定的力学强度82

3.2. 交联

尼龙6/66交联后的力学性能变化是常规的,即Tg上升,刚性和脆性增强83, 84。但是关于交联后的吸水量或水分对材料性能的影响的报道很少,只查到一篇报道称其交联后的尼龙6吸水量有所减少85

3.3. 表面改性

通过对尼龙6/66材料的表面进行疏水化改性可以减少吸水量。例如,通过表面接枝含氟聚合物86或者在表面形成具有荷叶结构超疏水层87

4. 总结

1、 尼龙6/66吸水的基本过程是是与水分子接触氢键结合塑化。因此,解决尼龙6/66吸水问题可针对与水分子接触(如表面改性)、氢键结合(如添加酚类聚合物)或塑化(如共混和无机纳米复合)三方面来考虑。按照这一思想,应该还能想出比上文更多的方法。

2、 各类改性方法得到的尼龙6/66复合材料的性能与吸水行为关系的研究较少,对实际应用的指导性不足,需要进一步研究。

5. 参考文献

1. Holmes, D. R.; Bunn, C. W.; Smith, D. J., The crystal structure of polycaproamide: Nylon 6. Journal of Polymer Science 1955, 17, (84), 159-177.

2. Boyer, R. F.; Spencer, R. S.; Wiley, R. M., Use of density-gradient tube in the study of high polymers. Journal of Polymer Science 1946, 1, (4), 249-258.

3. Hinrichsen, G., The role of water in polyamides. Colloid & Polymer Science 1978, 256, (1), 9-14.

4. Williams, M. L.; Bender, M. F., Extension of Unoriented Nylon 66 Filaments. III. Superposition of Data. Journal of Applied Physics 1965, 36, (10), 3044-3049.

5. Starkweather Jr, H. W.; Moore, G. E.; Hansen, J. E.; Roder, T. M.; Brooks, R. E., Effect of crystallinity on the properties of nylons. Journal of Polymer Science 1956, 21, (98), 189-204.

6. Bankar, V. G.; Spruiell, J. E.; White, J. L., Melt spinning of nylon 6: Structure development and mechanical properties of as-spun filaments. Journal of Applied Polymer Science 1977, 21, (9), 2341-2358.

7. Murthy, N. S.; Aharoni, S. M.; Szollosi, A. B., Stability of the gamma form and the development of the alpha form in nylon 6. Journal of Polymer Science: Polymer Physics Edition 1985, 23, (12), 2549-2565.

8. Murthy, N. S.; Stamm, M.; Sibilia, J. P.; Krimm, S., Structural changes accompanying hydration in nylon 6. Macromolecules 1989, 22, (3), 1261-1267.

9. Murthy, N. S.; Reimschuessel, A. C.; Kramer, V., Changes in void content and free volume in fibers during heat setting and their influence on dye diffusion and mechanical properties. Journal of Applied Polymer Science 1990, 40, (1-2), 249-262.

10. Quistwater, J. M. R.; Dunell, B. A., Dynamic mechanical properties of nylon 66 and the plasticizing effect of water vapor on nylon. Journal of Polymer Science 1958, 28, (117), 309-318.

11. Reimschuessel, H. K., Relationships on the effect of water on glass transition temperature and young’s modulus of nylon 6. Journal of Polymer Science: Polymer Chemistry Edition 1978, 16, (6), 1229-1236.

12. Ikeda, S.; Matsuda, K., Effects of Water on Thermally-Stimulated Currents of Nylon 6. Japanese Journal of Applied Physics 1980, 19, 855-859.

13. Woodward, A. E.; Sauer, J. A.; Deeley, C. W.; Kline, D. E., The dynamic mechanical behavior of some nylons. Journal of Colloid Science 1957, 12, (4), 363-377.

14. Miura, H.; Hirschinger, J.; English, A. D., Segmental dynamics in the amorphous phase of nylon 66: solid state deuterium NMR. Macromolecules 1990, 23, (8), 2169-2182.

15. Thomas, A. M., Effect of Change in Temperature on the Torsional Energy Losses in some Polyamides. Nature 1957, 179, (4565), 862-862.

16. Forster, M. J., Glass Transition Temperature of Nylon 6. Textile Research Journal 1968, 38, (5), 474-480.

17. Gunter, W., TSD-Untersuchungen zum Einflu?von Wasser auf die molekularen Beweglichkeiten in Polyamid-6. Angewandte Makromolekulare Chemie 1978, 74, (1), 187-202.

18. Batzer, H.; Kreibich, U. T., Influence of water on thermal transitions in natural polymers and synthetic polyamides. Polymer Bulletin 1981, 5, (11), 585-590.

19. Kettle, G. J., Variation of the glass transition temperature of nylon-6 with changing water content. Polymer 1977, 18, (7), 742-743.

20. Prevorsek, D. C.; Butler, R. H.; Reimschuessel, H. K., Mechanical relaxations in polyamides. Journal of Polymer Science Part A-2: Polymer Physics 1971, 9, (5), 867-886.

21. Kaimin, I. F.; Apinis, A. P.; Galvanovskii, A. Y., The effect of the moisture content on the transition temperatures of polycaproamide. Polymer Science U.S.S.R. 1975, 17, (1), 46-51.

22. Von Karl-Heinz, I., Der einfluß von wasser auf die molekularen beweglichkeiten von polyamiden. Die Makromolekulare Chemie 1960, 38, (1), 168-188.

23. Papir, Y. S.; Kapur, S.; Rogers, C. E.; Baer, E., Effect of orientation, anisotropy, and water on the relaxation behavior of nylon 6 from 4.2 to 300°C. Journal of Polymer Science Part A-2: Polymer Physics 1972, 10, (7), 1305-1319.

24. Vanderschueren, J.; Linkens, A., Water-Dependent Relaxation in Polymers. Study by the Thermally Stimulated Current Method. Macromolecules 1978, 11, (6), 1228-1233.

25. Kolařík, J.; Janáček, J., Secondary (beta) Relaxation Process of Alkaline Polycaprolactam Swollen by Low Molecular Weight Substances. Journal of Polymer Science Part C: Polymer Symposia 1967, 16, (1), 441-449.

26. B. Frank, P. F. P. P., Water sorption and thermally stimulated depolarization currents in nylon-6. Journal of Polymer Science Part B: Polymer Physics 1996, 34, (11), 1853-1860.

27. E. Laredo, M. C. H., Moisture effect on the low- and high-temperature dielectric relaxations in nylon-6. Journal of Polymer Science Part B: Polymer Physics 1997, 35, (17), 2879-2888.

28. Howard W. Starkweather Jr, J. R. B., The effect of water on the secondary dielectric relaxations in nylon 66. Journal of Polymer Science: Polymer Physics Edition 1981, 19, (8), 1211-1220.

29. Rong, S.-D.; Williams, H. L., Dynamic mechanical measurements on monofilaments. Journal of Applied Polymer Science 1985, 30, (6), 2575-2588.

30. Starkweather, H. W., The effect of water on some properties of oriented nylon. Journal of Macromolecular Science, Part B 1969, 3, (4), 727 – 736.

31. Perepechenko, I. I.; Prokazov, A. V., Acoustic properties of water-filled polycaproamide. Nauchnye Trudy – Kurskii Gosudarstvennyi Pedagogicheskii Institut 1980, 203, (14), 124-130.

32. Baschek, G.; Hartwig, G.; Zahradnik, F., Effect of water absorption in polymers at low and high temperatures. Polymer 1999, 40, (12), 3433-3441.

33. Kramer, E. J., Stress Aging in Anhydrous Nylon 6–10. Journal of Applied Physics 1970, 41, (11), 4327-4341.

34. Phillips, W. L.; Statton, W. O., Stress-relaxation hardening of nylon 66 filaments. Journal of Materials Science 1970, 5, (12), 1021-1026.

35. Bubeck, R. A.; Kramer, E. J., Effect of Water Content on Stress Aging of Nylon 6–10. Journal of Applied Physics 1971, 42, (12), 4631-4636.

36. Verma, A.; Deopura, B. L.; Sengupta, A. K., Effect of Moisture Content on Stress Ageing of Nylon 6. Textile Research Journal 1984, 54, (2), 92-97.

37. Takagi, Y.; Hattori, H., Studies on the drawing of polyamide fibers. IV. Effect of drawing on the degree of longitudinal swelling. Journal of Applied Polymer Science 1965, 9, (6), 2177-2187.

38. Kazuo Inoue, S. H., Swelling of nylon 6 film due to water sorption. Journal of Polymer Science: Polymer Physics Edition 1976, 14, (8), 1513-1526.

39. Razumovskii, L. P.; Markin, V. S.; Zaikov, G. Y., Sorption of water by aliphatic polyamides. Review. Polymer Science U.S.S.R. 1985, 27, (4), 751-768.

40. Murthy, N. S.; Minor, H.; Bednarczyk, C.; Krimm, S., Structure of the amorphous phase in oriented polymers. Macromolecules 1993, 26, (7), 1712-1721.

41. Murthy, N. S., Structure of the amorphous phase in semicrystalline polymers. Polymer Preprints (American Chemical Society, Devision of Polymer Chemistry) 1992, 33, 251-252.

42. Koshimo, A.; Tagawa, T., Steam and heat setting of nylon 6 fiber. VI. Water adsorption on nylon 6 fiber. Journal of Applied Polymer Science 1965, 9, (1), 45-54.

43. Glick, R. E.; Phillips, R. C., Proton magnetic resonance spectra of variously treated nylon 66. Journal of Polymer Science Part A: General Papers 1965, 3, (5), 1885-1894.

44. Rouse, P. E., Diffusion of Vapors in Films. Journal of the American Chemical Society 1947, 69, (5), 1068-1073.

45. Boyd, R. H., Dielectric Loss in 66 Nylon (Polyhexamethylene Adipamide). The Journal of Chemical Physics 1959, 30, (5), 1276-1283.

46. Murthy, N. S.; Minor, H.; Latif, R. A., Effect of annealing on the structure and morphology of nylon 6 fibers. Journal of Macromolecular Science, Part B 1987, 26, (4), 427 – 446.

47. Olf, H. G.; Peterlin, A., NMR observations of drawn polymers. IX. Chain mobilization and water mobility in nylon 66. Journal of Polymer Science Part A-2: Polymer Physics 1971, 9, (11), 2033-2042.

48. Puffr, R.; Šebenda, J., On the Structure and Properties of Polyamides. XXVII. The Mechanism of Water Sorption in Polyamides. Journal of Polymer Science Part C: Polymer Symposia 1967, 16, (1), 79-93.

49. Mitsuru, Y., Continuous measurement of dynamic tensile mechanical properties in polymer solids over a wide range of frequencies. III. Effect of absorbed water on nylon 6 at 23°C. Journal of Polymer Science: Polymer Physics Edition 1984, 22, (9), 1635-1643.

50. Le Huy, H. M.; Rault, J., Remarks on the [alpha] and [beta] transitions in swollen polyamides. Polymer 1994, 35, (1), 136-139.

51. Bretz, P. E.; Hertzberg, R. W.; Manson, J. A., Influence of absorbed moisture on fatigue crack propagation behaviour in polyamides. Journal of Materials Science 1981, 16, (8), 2061-2069.

52. Michielsen, S., Effect of moisture and orientation on the fracture of nylon 6,6 fibers. Journal of Applied Polymer Science 1994, 52, (8), 1081-1089.

53. Kawasaki, K.; Sekita, Y., Sorption and diffusion of water vapor by nylon 6. Journal of Polymer Science Part A: General Papers 1964, 2, (5), 2437-2443.

54. Fyfe, C. A.; Randall, L. H.; Burlinson, N. E., Water penetration in nylon 6,6: Absorption, desorption, and exchange studied by NMR microscopy. Journal of Polymer Science Part A: Polymer Chemistry 1993, 31, (1), 159-168.

55. Howard, W. S., Jr., The sorption of water by nylons. Journal of Applied Polymer Science 1959, 2, (5), 129-133.

56. Lim, L.-T.; Britt, I. J.; Tung, M. A., Sorption and transport of water vapor in nylon 6,6 film. Journal of Applied Polymer Science 1999, 71, (2), 197-206.

57. Zimm, B. H.; Lundberg, J. L., Sorption of Vapors by High Polymers. Journal of Physical Chemistry 1956, 60, (4), 425-428.

58. Howard, W. S., Jr., Clustering of water in polymers. Journal of Polymer Science Part B: Polymer Letters 1963, 1, (3), 133-138.

59. Starkweather, H. W., Some Aspects of Water Clusters in Polymers. Macromolecules 1975, 8, (4), 476-479.

60. Goudeau, S.; Charlot, M.; Vergelati, C.; Muller-Plathe, F., Atomistic Simulation of the Water Influence on the Local Structure of Polyamide 6,6. Macromolecules 2004, 37, (21), 8072-8081.

61. Lozano-González, M. J.; González-De Los Santos, E. A.; Johnson, A. F.; Tsui, S. W., Improvement of dimensional stability of nylon-6 block copolymer using phenolic resin by reaction injection molding. Journal of Applied Polymer Science 1998, 70, (9), 1811-1816.

62. Huang, P. T.; Lee , J. L.; Chiu, S. C.; Kwei, T. K.; Pearce, E. M., Modification of Nylon 6 by phenol-containing polymers. Journal of Applied Polymer Science 1999, 73, (2), 295-300.

63. Gallucci, R. Moisture reduction in polyamide composition. WO 88/06160, 1988.

64. Gallucci, R. R.; Mass, P. Moisture reduction in polyamide compositions. U.S. Patent 4,849,474, 1989.

65. Valentine, L., Interaction of polyamides with solvents. I. A preliminary survey of the swelling of crosslinked nylon 66 in various types of solvents. Journal of Polymer Science 1957, 23, (103), 297-314.

66. Wang, F.-Y.; Ma, C.-C. M.; Hung, A. Y. C.; Wu, H.-D., The Interassociation Equilibrium Constant and Thermodynamic Properties of Phenolic Resin/Polyamide 6 Blend. Macromolecular Chemistry and Physics 2001, 202, (11), 2328-2334.

67. Huang, P.-T.; Kwei, T. K.; Pearce, E. M.; Levchik, S. V., Blends of nylon-6 with phenol-containing polymers. Journal of Polymer Science Part A: Polymer Chemistry 2001, 39, (6), 841-850.

68. Hartikainen, J.; Lehtonen, O.; Harmia, T.; Lindner, M.; Valkama, S.; Ruokolainen, J.; Friedrich, K., Structure and Morphology of Polyamide 66 and Oligomeric Phenolic Resin Blends: Molecular Modeling and Experimental Investigations. Chemistry of Materials 2004, 16, (16), 3032-3039.

69. Guerrica-Echevarría, G.; Eguiazábal, J. I.; Nazábal, J., Water Sorption in Polyamide 6/Poly(Amino-ether) Blends. I. Sorption Characteristics and Phase Behavior. Journal of Macromolecular Science, Part A 2003, 40, (6), 557 – 569.

70. Gallucci, R. R.; Shah, D. Nylon Blends with Reduced Moisture Absorbance. http://www.priorartdatabase.com/IPCOM/000124056/ (Jul. 29),

71. Akkapeddi, M. K.; Glans, J. H.; Dege, G. J.; Chung, S. Polyamide compositions comprising aliphatic polyamide and an aromatic polyamide oligomer having improved moisture resistance. U.S. Patent 5,541,267, 1996.

72. Ohlsson, B.; Hassander, H.; Törnell, B., Improved compatibility between polyamide and polypropylene by the use of maleic anhydride grafted SEBS. Polymer 1998, 39, (26), 6705-6714.

73. 孟永新; 张哲国; 李景庆; 田晓明, 聚丙烯接枝马来酸酐增容聚酰胺6/聚丙烯体系吸湿性能及力学性能的研究. 中国塑料 2004, 18, (11), 49-53.

74. Kolařík, J.; Fambri, L.; Šlouf, M.; Konečný, D., Heterogeneous polyamide 66/syndiotactic polystyrene blends: Phase structure and thermal and mechanical properties. Journal of Applied Polymer Science 2005, 96, (3), 673-684.

75. Thill, B. P. Blend of polycarbonate and polyamide compatibilized with a polyalkyloxazoline. U.S. Patent 4,883,836, Nov. 28, 1989.

76. Gattiglia, E.; Turturro, A.; Pedemonte, E.; Dondero, G., Blends of polyamide 6 with bisphenol-A polycarbonate. II. Morphology-mechanical properties relationships. Journal of Applied Polymer Science 1990, 41, (7-8), 1411-1423.

77. Jang, S. P.; Kim, D., Thermal, mechanical, and diffusional properties of nylon 6/ABS polymer blends: Compatibilizer effect. Polymer Engineering & Science 2000, 40, (7), 1635-1642.

78. Chung, J. S.; Woo, T.; Oakley, C. W.; Osterndorf, J. F.; Mehta, V. In Moisture resistant nylon: dimensional stability, ANTEC Conference Proceedings, 2004; Society of Plastics Engineers, Ed. 2004; pp 2522-2526.

79. Liou, W. J., Effects of Moisture Content on the Creep Behavior of Nylon-6 Thermoplastic Composites. Journal of Reinforced Plastics and Composites 1998, 17, (1), 39-50.

80. Low, H.; Liu, T. X.; Loh, W. W., Moisture sorption and permeation in polyamide 6/clay nanocomposite films. Polymer International 2004, 53, (12), 1973-1978.

81. Pramoda, K. P.; Liu, T., Effect of moisture on the dynamic mechanical relaxation of polyamide-6/clay nanocomposites. Journal of Polymer Science Part B: Polymer Physics 2004, 42, (10), 1823-1830.

82. Bhuta, M.; Sacks, W. Polyamide composite film. U.S. Patent 3,762,986, Oct. 2, 1971.

83. Charlesby, A., Effect of High-energy Radiation on Long-chain Polymers. Nature 1953, 171, (4343), 167-167.

84. Deeley, C. W.; Woodward, A. E.; Sauer, J. A., Effect of Irradiation On Dynamic Mechanical Properties of 6–6 Nylon. Journal of Applied Physics 1957, 28, (10), 1124-1130.

85. Dadbin, S.; Frounchi, M.; Goudarzi, D., Electron beam induced crosslinking of nylon 6 with and without the presence of TAC. Polymer Degradation and Stability 2005, 89, (3), 436-441.

86. Zhang, J.; Khong, K. T.; Kang, E. T., Surface passivation of nylon-6,6 films by graft copolymerization for reduction of moisture sorption. Journal of Applied Polymer Science 2000, 78, (7), 1366-1373.

87. Satoh, K.; Nakazumi, H.; Morita, M., Preparation of Super-Water-Repellent Fluorinated Inorganic-Organic Coating Films on Nylon 66 by the Sol-Gel Method Using Microphase Separation. Journal of Sol-Gel Science and Technology 2003, 27, (3), 327-332.

One thought on “尼龙吸水啊吸水,嗯嗯

Comments are closed.