Author Archives: Andrew

About Andrew

Rheologist

压敏胶应该能讲一个流变学故事

压敏胶(pressure-sensitive adhesive,PSA)就是平时我们所说的不干胶。卷成一卷卖的透明胶就是其中一个产品形态。Post-it便利贴上的那一层胶粘剂也是压敏胶。压敏胶的产品目标是容易揭的同时又粘得住——一对看似矛盾的要求。从今天的角度来看,这对矛盾的合理之处在于时间尺度的分离——粘得住是讨论较长时间尺度的性能,而容易揭则是暂短时间尺度的性能。因此是可以通过粘弹性的细致调整来实现的。

这个概念能被接受乃至成功实现成为一个产品,是源自3M公司的已故科学家Carl A. Dahlquist的奠基性贡献。一个重要判据——Dahlquist判据(Dahlquist criteria)就是以他名字命名的。Dahlquist活跃的年代正是材料科学的黄金年代——冷战时期的美国。两篇讣告——这篇这篇——很好地复原了Dahlquist的个人职业生涯和时代背景的交织。材料科学与工程(materials science and engineering)的概念正是在这个时期萌芽的(1974年的COSMAT报告)。在当时,材料科学与工程几乎就是“交叉学科”(interdisciplines)的同义词。1977年,Dahlquist在Interdisciplinary Science Reviews发表了文章Adhesion An Interdisciplinary Science,所罗列的影响胶粘剂性能的物理、化学因素,几乎覆盖了整个今天视角下的软物质物理。

这个时期也恰好是高分子材料的各个分支从经验性试错的“黑暗时代”走出来,逐渐达到理论认识的时代。在这个时代不乏高分子物理和流变学充当主角的材料工程故事。前面提到的COSMAT报告,是材料科学与工程“四面体”概念的始作恿者。压敏胶的性能(performance)要求,显然高度集中于流变学性质(property),因此对高分子结构流变学的理论认识水平提出很高的要求。在今天,我们已经对如何实现压敏胶性能的时间尺度分离有基本认识。高分子熔体或浓溶液的典型粘弹谱,分为末端、平台、转变和玻璃区(terminal/plateau/transition/glass zones)。但是在压敏胶应用场合下,这些区域可被改称为tack zone、shear zone和peel zone,对应着压敏胶的三大重要性能。然而,线性粘弹性远不足以概括压敏胶材料实际使用场景。剪切变稀性和触变性恢复是两大直接对应压敏胶实施过程的非线性粘弹性性质。

然而,像Dahlquist在1977年的那篇文章那样,能以工业产品实例来讲一个软物质物理或流变学故事的文章,在软物质物理方兴未艾的今天,仍然稀少而难特——特别是在大学教学当中。

“流变测角仪”

卡尔·魏森伯格(Karl Weissenberg)研制的流变仪,当时称为流变测角仪(rheogoniometer)。魏森伯格的流变仪常带着他的姓一齐表述为Weissenberg rheogoniometer,我见过报道的型号从R16一直到R19。魏森伯格的学术贡献以晶体学研究领域为主。在晶体测量学中,测角仪用于精确得知试样被旋转了多少角度,以便得知不同晶面之间的夹角。他的流变仪也用这个词,首先可能是要强调这是一台(以今天的术语)旋转流变仪(rotational rheometer)。

刚刚,我偶然找到一本魏森伯格的连续介质力学讲座讲义(DTIC AD0408493)。在这个1963年的讲义中,我们能够看到魏森伯格本人对使用goniometer这个词的思想阐述。在运动学(kinematics)的章节中,作者提到了,如何实现对运动学的测量,使用的是goniometry一词,并作了很详细的解释。但是原文所采用的术语体系,跟今天的连续介质力学惯用体系差别很大,因此是不太好读的。下面我把他的意思翻译成现在熟悉的术语体系。

如果你有连续介质力学基础的话,应该记得应变的定义是局域的。我们使用形变梯度张量来表示局域形变,这个张量其实是位移场的空间导数。我们确实需要把应变理解为位移场的空间变化,但在做法上,我们通过局域化描述,使得这件事可以线性化(忽略“高阶无穷小”),只讨论那个张量(导数)就足够了。但是,一般而言,这个张量仍然是空间位置的函数,除非我们形成一个“均匀的形变场”。魏森伯格在这里其实就是在强调,理论上只讨论均匀形变,以及实验上去实现均匀形变,有很大的益处。那就是,局域上的表征参数,可以代表整体。魏森伯格描述这件事时的语言,特别像在说“晶体只需要讨论晶胞结构,再通过点阵就能能代表整体”。此外,魏森伯格跟一般的力学家的空间想象是不同的;他似乎天然采用的是球坐标系来阐述。每当需要讨论一个空间微元dV时,他似乎都直接用立体角(solid angle)一词。这就是为什么,他提及空间关系时都从“角”出发,称运动学为“测角学”(goniometry)。测角学一词在魏森伯格那里主要指“(在均匀的前提下)只讨论一点局域就可以代表全局”的做法。同样的方法也适用于应力张量的讨论。因此魏森伯格在动力学(dynamics)的章节也用了“动力学的测角学”(goniometry of dynamics)的说法。

在这个讲义中,魏森伯格也亲自介绍了他发明的流变仪的思想,并称之为一种goniometric design。魏森伯格的流变仪原则,就是至今的流变测量学原则。其中,关于需要测量完整的三维信息(张量值测量)这件事,他形容为“要测量完整的立体角”。我想,按照他的说法,一个仪器能被称之为rheogoniometer,就必须“能测整个立体角”。

总结而言,魏森伯格本人提及goniometry时,大概强调了两个方面,一是三维空间的位置变化,局域上用导数表示(也就是张量);均匀场前提下,可以用这个局域特称代替全体。而一台goniometer,则需要做到形成均匀形变和应力场以及测量完整的张量分量。从今天的角度看,魏森伯格的流变仪原始设计的创新性就在于法向应力差效应(魏森伯格效应)的同时测量。如果由魏森伯格自己来说,他可能还会强调,这个流变仪不仅动力学测量上能说清到底测的是应力张量的什么分量,其运动学也是清楚的,能够校准为严格意义上的应变张量的剪切分量。而所有这些理论基础,都是一种goniometry。

在K. Walters的流变测量学经典著作Rheometry中,旋转流变仪章节标题也仍用rheogoniometer。这个著作的出版时期是1975年,魏森伯格的流变仪已经商用多年且为人所知了,配用的测量几何也都包括了常用的三种。在这一章节的开头,作者讨论了这个词在当时的使用现状。他说,虽然词典把这个词定义为既测应力张量的剪切分量,又测其法向应力差的流变仪,但这个词主要强调旋转流变仪。也许也是这本书的标题用了rheometry一词来表示一个更广的概念(即能测完整本构关系,但未必通过旋转运动学),使得流变仪(rheometer)一词站得更前、走得更远。在今天我们都通过在“流变仪”一词前面加限定语来描述不同的具体设计,也包括用“旋转流变仪”(rotational rheometer)一词替代了“流变测角仪”(rheogoniometer)了。

在电子计算机之前的Fourier分析

如果我们要对一个周期信号进行Fourier级数分析,那么我们是假定该信号可以表示成

    \[f\left(x\right)=\sum_{n=-\infty}^\infty c_n e^{\mathrm{i}2\pi n x/P}\]


其中

    \[c_n=\frac{1}{P}\int_0^P f\left(x\right)e^{-\mathrm{i} 2\pi n x/P}\mathrm{d}x\]

在今天,我们的实验信号基本都已经数字化,在电子计算机中一秒钟不到就做完了一个快速Fourier变换计算。但是在上世纪50~60年代,电子计算机还没发明之前,实验结果本身就可能是通过X-Y记录仪或双笔记录仪画在坐标纸上的。当时的人是怎样对这么一段墨迹进行Fourier级数分析的呢?我们可以看到,Fourier级数的各个系数c_n是一个积分。在那个年代,积分可以使用欧拉法数值求解。在此之前,需要将被积函数进行人工采样(sampling)离散化。因此这是一个很繁琐的任务。

小野木重治(Shigeharu Onogi)可能是日本最早对非线性粘弹性流体的正弦振荡测试结果作谐波分析的研究者。他当时估计就是这么做的[1][2]

在美国,W. Philippoff很早就开发宽频范围的动态测试仪器。他在1966年发表的文章[3]中,用一个特别构建的可调节模拟计算器,去同时生成一个基频和3倍频的正弦信号,然后作加和。他通过调节这个模拟计算器,凑出与实验结果形状相似的Lissajous曲线,从而得知该曲线的3倍频谐波幅值和相位。

1960年代,恰好是模拟技术的颠峰时期。模拟计算电路能能做很多事情。由流变仪得出的波形信号,可通过相关器与给定的波形比较,输出的结果是与给定波形的内积。这样就可以通过设定参考波形信号,从原始信号中提取相应的分量,从而实现谐波分析。例如,Queen’s Collage机械工程系的Harris和Bogie[4][5]

1967年,Brenner的林肯实验室报告给出了Cooley和Tukey的快速Fourier变换的Fortran程序。凯斯西储大学化学系的Dodge和Krieger在1971年就用上这个方法来进行谐波分析了[6],正式进入了数字时代。

References

  1. S. Onogi, T. Masuda, and T. Matsumoto, "Non-Linear Behavior of Viscoelastic Materials. I. Disperse Systems of Polystyrene Solution and Carbon Black", Transactions of the Society of Rheology, vol. 14, pp. 275-294, 1970. http://dx.doi.org/10.1122/1.549190
  2. T. Matsumoto, Y. Segawa, Y. Warashina, and S. Onogi, "Nonlinear Behavior of Viscoelastic Materials. II. The Method of Analysis and Temperature Dependence of Nonlinear Viscoelastic Functions", Transactions of the Society of Rheology, vol. 17, pp. 47-62, 1973. http://dx.doi.org/10.1122/1.549319
  3. W. Philippoff, "Vibrational Measurements with Large Amplitudes", Transactions of the Society of Rheology, vol. 10, pp. 317-334, 1966. http://dx.doi.org/10.1122/1.549049
  4. J. Harris, and K. Bogie, "The experimental analysis of non-linear waves in mechanical systems", Rheologica Acta, vol. 6, pp. 3-5, 1967. http://dx.doi.org/10.1007/BF01968375
  5. O.E. Ibrahim, "A low-frequency high-speed correlator", Rheologica Acta, vol. 8, pp. 214-220, 1969. http://dx.doi.org/10.1007/BF01984661
  6. J.S. Dodge, and I.M. Krieger, "Oscillatory Shear of Nonlinear Fluids I. Preliminary Investigation", Transactions of the Society of Rheology, vol. 15, pp. 589-601, 1971. http://dx.doi.org/10.1122/1.549236