Category Archives: 关于科研的文章

“流变测角仪”

卡尔·魏森伯格(Karl Weissenberg)研制的流变仪,当时称为流变测角仪(rheogoniometer)。魏森伯格的流变仪常带着他的姓一齐表述为Weissenberg rheogoniometer,我见过报道的型号从R16一直到R19。魏森伯格的学术贡献以晶体学研究领域为主。在晶体测量学中,测角仪用于精确得知试样被旋转了多少角度,以便得知不同晶面之间的夹角。他的流变仪也用这个词,首先可能是要强调这是一台(以今天的术语)旋转流变仪(rotational rheometer)。

刚刚,我偶然找到一本魏森伯格的连续介质力学讲座讲义(DTIC AD0408493)。在这个1963年的讲义中,我们能够看到魏森伯格本人对使用goniometer这个词的思想阐述。在运动学(kinematics)的章节中,作者提到了,如何实现对运动学的测量,使用的是goniometry一词,并作了很详细的解释。但是原文所采用的术语体系,跟今天的连续介质力学惯用体系差别很大,因此是不太好读的。下面我把他的意思翻译成现在熟悉的术语体系。

如果你有连续介质力学基础的话,应该记得应变的定义是局域的。我们使用形变梯度张量来表示局域形变,这个张量其实是位移场的空间导数。我们确实需要把应变理解为位移场的空间变化,但在做法上,我们通过局域化描述,使得这件事可以线性化(忽略“高阶无穷小”),只讨论那个张量(导数)就足够了。但是,一般而言,这个张量仍然是空间位置的函数,除非我们形成一个“均匀的形变场”。魏森伯格在这里其实就是在强调,理论上只讨论均匀形变,以及实验上去实现均匀形变,有很大的益处。那就是,局域上的表征参数,可以代表整体。魏森伯格描述这件事时的语言,特别像在说“晶体只需要讨论晶胞结构,再通过点阵就能能代表整体”。此外,魏森伯格跟一般的力学家的空间想象是不同的;他似乎天然采用的是球坐标系来阐述。每当需要讨论一个空间微元dV时,他似乎都直接用立体角(solid angle)一词。这就是为什么,他提及空间关系时都从“角”出发,称运动学为“测角学”(goniometry)。测角学一词在魏森伯格那里主要指“(在均匀的前提下)只讨论一点局域就可以代表全局”的做法。同样的方法也适用于应力张量的讨论。因此魏森伯格在动力学(dynamics)的章节也用了“动力学的测角学”(goniometry of dynamics)的说法。

在这个讲义中,魏森伯格也亲自介绍了他发明的流变仪的思想,并称之为一种goniometric design。魏森伯格的流变仪原则,就是至今的流变测量学原则。其中,关于需要测量完整的三维信息(张量值测量)这件事,他形容为“要测量完整的立体角”。我想,按照他的说法,一个仪器能被称之为rheogoniometer,就必须“能测整个立体角”。

总结而言,魏森伯格本人提及goniometry时,大概强调了两个方面,一是三维空间的位置变化,局域上用导数表示(也就是张量);均匀场前提下,可以用这个局域特称代替全体。而一台goniometer,则需要做到形成均匀形变和应力场以及测量完整的张量分量。从今天的角度看,魏森伯格的流变仪原始设计的创新性就在于法向应力差效应(魏森伯格效应)的同时测量。如果由魏森伯格自己来说,他可能还会强调,这个流变仪不仅动力学测量上能说清到底测的是应力张量的什么分量,其运动学也是清楚的,能够校准为严格意义上的应变张量的剪切分量。而所有这些理论基础,都是一种goniometry。

在K. Walters的流变测量学经典著作Rheometry中,旋转流变仪章节标题也仍用rheogoniometer。这个著作的出版时期是1975年,魏森伯格的流变仪已经商用多年且为人所知了,配用的测量几何也都包括了常用的三种。在这一章节的开头,作者讨论了这个词在当时的使用现状。他说,虽然词典把这个词定义为既测应力张量的剪切分量,又测其法向应力差的流变仪,但这个词主要强调旋转流变仪。也许也是这本书的标题用了rheometry一词来表示一个更广的概念(即能测完整本构关系,但未必通过旋转运动学),使得流变仪(rheometer)一词站得更前、走得更远。在今天我们都通过在“流变仪”一词前面加限定语来描述不同的具体设计,也包括用“旋转流变仪”(rotational rheometer)一词替代了“流变测角仪”(rheogoniometer)了。

液体物理拾遗

H. FrischJ. Lebowitz在1964年主编了一个讲座和重印论文集。完整citation信息是:

H. Frisch & J. Lebowitz (1964), The equilibrium theory of classical fluids—a lecture note and reprint volume, W. A. Benjamin, inc.

这书在archive.org上可以借阅

第二年D. McQuarrieScience锐评这本书,我大致注意到了几条意见。一是认为这本书只推销了液体平衡态统计的积分方程理论,而完全没有介绍其他竞争性理论,因此题目有误导,实际书名应是“Radial distribution function and integral equation techniques in the classical equilibrium theory of fluids.” 二是,McQuarrie认为全书最有价值的是Ornstein & Zernicke合著的两篇著名论文,因为这两篇论文原本发表在一个不易获取的期刊上。第三是一段对这类专著现象的吐槽,原文引用如下

The purpose of a reprint volume is to present the recent developments in an active and rapidly expanding field. In principle, this is a useful and necessary concept, but there is nevertheless the danger that, owing to the eagerness of publishers, a plethora of such volumes will appear. A number of fields are expanding and developing at such a rate that reprint volumes are needed, but it is questionable whether the classical equilibrium theory of liquids is one of them.

我从McQuarrie的这些说法总体揣摸,估计他认为液体的平衡态统计理论进展,与当时那几年出现的这类论文集的数量相比并不相称。他的重点断不是要去直接贬低某个领域没意思,不值得做;那就应该是嫌这类专著一下子出得太多了,而相关领域又不是真有如此大的进展。

我没有去调查那几年是不是真的突然很多这个话题的论文集。但是,液体物理之中确实来来去去几个美国人,名字经常署在一起。比如,另一个液体物理的大名字S. Rice也在Phys. Today评论了这个论文集。他主要吐槽,在原印期刊里有重复页,以及这书的重印技术简陋。但最后一段说这类专著一般很贵,但这本很便宜。实际上Rice跟Lebowitz就合著过综述

从我的角度看,这本专著主要是Lebowitz个人兴趣。Lebowitz本人是数学物理学家。这本专著中选择的都是理论的精确化努力的工作。正如McQuarrie也提到的那样,全书只有最后两篇东西有实验数据。这也其实是标题误导的又一方面了。

从今天看积分方程理论应该是从当时的各种竞争理论survive下来了。但在当时并没有这种先知先觉。在物理学当中,竞争性理论的失败,很少能100%有理有据,特别是统计力学。因为实验观察的是宏观体系,理论出发点是微观状态。从“还没积分”的东西出发去预测“积完分之后”的东西,信息反正是要丢的。你原来整进来了什么,然后又丢掉什么,可能有不同的办法,最后都能得到相同的宏观行为,光靠实验是证伪的。只能再通过其他标准,比如是否足够的“第一原理性”,是否与其他物理理论自洽等等。甚至应该说,很多半经验/半现象学模型,并不就应该完全淘汰掉。所以,最后其中某一理论方法在后来成为优胜者,其实因素是综合的,历史主观成份很大。可惜的是,什么理论好,什么理论不好,为什么喜欢一个理论不喜欢另一个,这样的讨论很少见诸文字,因为大家都希望维持某种学术体面。但这种自我规训其实是科学家对“科学”的一种朴素的认识导致的。说一个理论之所以生存下来无非就是历史主观性,他们应该是不接受的;如果是,那也必须是一个需要努力改变的不完美之处。理论只能有唯一正确。如果我们还不能证明某个理论精确正确,那我们就应该朝这个方向努力。但是科学哲学对科学到底是什么的近世认识,未必支持这种努力的价值,反而支持一种,讲究在“品味”上人人平等,看淡“优胜与否”的文化。

昭和时期

昭和时期(1926年至1989年)恰逢日本现代化的进程。在这一时期,日本人经历了西方现代文明对本土的强烈冲击,社会思想在动荡中经历了巨大的变迁。我观看过的电视剧《阿信的故事》以及宫崎骏的动画电影《起风了》,都给我留下了深刻的印象。以至于现在,每当我看到一位在这个时期成长起来的科学家,我都能想象到他在年轻时代是如何在各种社会思潮的包围中确立自己的研究志向,并克服现实中的种种困难的。战后重建时期的日本,处于昭和时代的中后期,其科学研究水平也是在这段时期显现出来的。我之所以跟“昭和”年号联系起来,是因为这一时期发表的日文论文中的年份是用“昭和二十六年”这种年号纪年法的。你每查到一篇论文,都需要被迫去查算到底这是公元多少年。从汤川秀树获得诺贝尔奖(1949年)开始,日本不断出现在理论物理进程中作出了无法绕过的里程碑式工作的物理学家。诺贝尔奖得主绝不是孤立存在的。能出现若干位诺贝尔奖得主,就说明在更多的分支领域当中,也出现了大量奠基式的人物和工作,这也表明整个科学研究界的文化环境是良性的,土壤是肥沃的。

在我的小领域中,昭和时代成长起来的日本科学家还有好多位。上一篇文章“感字”提到的荻野一善就经常与日本流变学先行者中川鹤太郎共同发表论文。同为溶胀网络的重要研究者之一——小贯明事实上是与川崎恭治一道进行相变研究的,后者是临界现象的模式耦合理论创立者。日本在非平衡统计物理的更早和重要的人物就是大家熟知的久保亮五(就是Green-Kubo关系中的Kubo)和森肇(就是Zwanzig-Mori投影算符中的Mori)了。

我博士导师的博士导师——藤田博(,是昭和十九年(1944年)京都大学理学部物理学科毕业,该年B-29开始空袭东京。而一年之后的1945年就是日本在遭遇两颗原子弹爆炸之后,对内全国玉音放送《终战诏书》,对外宣布无条件投降。1946年日本天皇发表《人间宣言》,自己说明自己并非神,《日本国宪法》公布并在次年(1947)年施行。

也就在这一年,藤田到京都大学的水产科工作。虽然他对微分方程感兴趣,但不得不应用于渔业,因此发表过一些以《産卵過程に対する密度効果の形式について(论种群密度对产卵过程影响的形式)》为标题,实际内容是一个简单的动理学方程的高斯分布解的论文[1]

藤田在1954年到威斯康星大学化学系做博后。正是在这段时期他作出了超离心理论和方法上的代表性工作。当时在威斯康星大学化学系的教授John Warren Williams(1898~1988)(他本人不喜欢John这个名字,他和他身边的人称他Jack Williams)由于Svedberg1923年曾造访威斯康星大学而对超离心方法感兴趣。1934~35年Jack到Svedberg那里学习大约一年的超离心技术。回美国后主导了美国第一台超离心机的落地,就在他自己的实验室,并且用于蛋白质研究。Williams实验室因此也成为了美国趣离心方法研究的代表性实验室。藤田博来做博后之后,发挥了他在求解扩散方程方面的特长,解决了长期存在的问题,即考虑扩散系数和沉降系数的浓度依赖性之后,它们对溶质沉降边界区域形状的定量影响。他后来写的书Mathematical Theory of Sedimentation Analysis(Academic Press 1962)是超离心基础理论领域的重要著作,但可能更多人会知道他写的Foudations of Ultracentrifugal Analysis(John Wiley & Sons 1975)。在前一本书中我们可以留意到,藤田并非一位对解方程感兴趣的数学家,而是一位物理学家,因为他把自己所关注的扩散问题归类为“不可逆热力学”。这也是物理学界新形成的领域,这可大约以de Groot的著作Thermodynamics of Irreversible Processe(North-Holland 1952)和普里高津的著作Introduction to Thermodynamics of Irreversible Processe(Charles C Thomas 1955)为标志。

尽管藤田是一个擅长理论的人,但是他可能也搭过实验仪器。在这篇1952年的论文里[2](应该在他去美国之前),他改装了更早几年报道在J. Appl. Phys.上的[3]一种对软体进行压缩形变的力学测试装置。用于测量浓到像凝胶状的高分子溶液的弹性模量。我上一篇文章提到的荻野的论文,就是借用藤田改进的仪器进行实验的。

藤田报道的力学仪器。试样的压缩载荷是通过与链条天平类似的原理(部件10、11)来实现的。

“流体的弹性”或“流动的固体”,是流变学的核心问题。《流动的固体》作者中川鹤太郎在同时代就已经发表了多篇关于液体的粘弹性的论文(值得注意的是,中川称“rheology”为“流动学”,因此中文的“流变学”并不来自日语)。《流动的固体》书中所称的久山多美男关于“粘弹性系数的新测量方法”(亦称久山先生可能是在日语中道次使用“粘弹性”),就被中川改进并于同年(昭和26年)发表于《日本化学杂志》。我在流动的固体2021中介绍过了。藤田注意到中川的研究是不奇怪的。他后来在日本的《高分子》(Kobunshi,是1952年创刊的)杂志上发表过一篇散文(1983年,这时日本的杂志早已使用公元纪年),提到他作为物理学背景的学生,刚开始学习高分子时这一交叉学科的困难在于当时还没有统一连贯的教科书或专著。确实,他在1957年就与岸本昭一同在《高分子》发表了一篇有趣的3人对谈,对谈内容是围绕当时在橡胶长时间应力松弛行为中区分物理上的松弛和由于化学老化造成的松弛。开头3人就关于“化学松弛”、“物理缓合”等术语如何翻译成日语抱怨了一番,最终大家打算找一家coffee shop进行“精神缓和”(mental relaxation)。

因此可能说藤田博(我师爷)关于高分子方面的研究,最早就是从流变学开始的。

References

  1. H. Fujita, "Factors affecting the type of population density effect upon average rate of oviposition", Population Ecology, vol. 2, pp. 1-7, 1953. http://dx.doi.org/10.1007/BF02789688
  2. H. Fujita, K. Ninomiya, and T. Homma, "Mechanical Properties of Concentrated Hydrogels of Agar-agar. I. Modulus of Elasticity in Compression", Bulletin of the Chemical Society of Japan, vol. 25, pp. 374-378, 1952. http://dx.doi.org/10.1246/bcsj.25.374
  3. S.L. Dart, and E. Guth, "Elastic Properties of Cork. I. Stress Relaxation of Compressed Cork", Journal of Applied Physics, vol. 17, pp. 314-318, 1946. http://dx.doi.org/10.1063/1.1707719