Category Archives: 工作笔记

科研和实验笔记

kcite插件测试

装了kcite插件,可以将文中的DOI号直接渲染成恰当的引用(文中变序号,文末加bibliography)。本页为测试。

Recently, many simulation and experiment studies have been published [1] to reveal the precise features of the jamming phase diagram for different amorphous systems within this framework. Of many model systems for the jamming transition, the poly(N-isopropylacrylamide) (PNIPAM) microgel suspension is a unique one. The particles are soft and deformable, so they can be efficiently packed beyond the close packing condition for the hard spheres. Moreover, due to the thermo-responsibility, a small change in temperature will cause a large change of the particle diameter. This endows PNIPAM microgel suspensions with interesting physical and rheological properties [2][3]. Different from the inert hard sphere counterparts, the PNIPAM microgel suspension undergoes a transition from solid-like to liquid-like state with increasing temperature not due to the increase in thermal energy kBT, but due to the decrease in the particle diameter, which lowered the effective volume fraction φeff of the particles in the suspension [4][5][6][7]. In the view of jamming phase diagram, T was coupled with φeff, so that the PNIPAM microgel suspension state cannot be independently controlled by T and φeff. Moreover, the softness of the microgel particles was also changed by the swelling extent. There was a report where φeff was varied by the particle number density at constant temperature [8], but direct comparison between the effect of the two control variables, T and concentration, on increasing φeff is lacking. In the jamming state, the microgel suspension responded essentially elastically to the applied small strain and turned to the shear-unjamming state and flowed beyond yielding by tuning control variables [9]. The flow of the microgel suspensions after yielding was nonlinear viscoelastic [10][11].

References

  1. M.P. Ciamarra, M. Nicodemi, and A. Coniglio, "Recent results on the jamming phase diagram", Soft Matter, vol. 6, pp. 2871, 2010. http://dx.doi.org/10.1039/b926810c
  2. B. Sierra‐Martin, J.J. Lietor‐Santos, A. Fernandez‐Barbero, T.T. Nguyen, and A. Fernandez‐Nieves, "Swelling Thermodynamics of Microgel Particles", Microgel Suspensions, pp. 71-116, 2011. http://dx.doi.org/10.1002/9783527632992.ch4
  3. M. Cloitre, "Yielding, Flow, and Slip in Microgel Suspensions: From Microstructure to Macroscopic Rheology", Microgel Suspensions, pp. 283-309, 2011. http://dx.doi.org/10.1002/9783527632992.ch11
  4. G. Romeo, A. Fernandez‐Nieves, H.M. Wyss, D. Acierno, and D.A. Weitz, "Temperature‐Controlled Transitions Between Glass, Liquid, and Gel States in Dense p‐NIPA Suspensions", Advanced Materials, vol. 22, pp. 3441-3445, 2010. http://dx.doi.org/10.1002/adma.200904189
  5. Z. Zhang, N. Xu, D.T.N. Chen, P. Yunker, A.M. Alsayed, K.B. Aptowicz, P. Habdas, A.J. Liu, S.R. Nagel, and A.G. Yodh, "Thermal vestige of the zero-temperature jamming transition", Nature, vol. 459, pp. 230-233, 2009. http://dx.doi.org/10.1038/nature07998
  6. J. Mattsson, H.M. Wyss, A. Fernandez-Nieves, K. Miyazaki, Z. Hu, D.R. Reichman, and D.A. Weitz, "Soft colloids make strong glasses", Nature, vol. 462, pp. 83-86, 2009. http://dx.doi.org/10.1038/nature08457
  7. F. Scheffold, P. Díaz-Leyva, M. Reufer, N. Ben Braham, I. Lynch, and J.L. Harden, "Brushlike Interactions between Thermoresponsive Microgel Particles", Physical Review Letters, vol. 104, 2010. http://dx.doi.org/10.1103/PhysRevLett.104.128304
  8. D. Paloli, P.S. Mohanty, J.J. Crassous, E. Zaccarelli, and P. Schurtenberger, "Fluid–solid transitions in soft-repulsive colloids", Soft Matter, vol. 9, pp. 3000, 2013. http://dx.doi.org/10.1039/c2sm27654b
  9. H. Senff, and W. Richtering, "Temperature sensitive microgel suspensions: Colloidal phase behavior and rheology of soft spheres", The Journal of Chemical Physics, vol. 111, pp. 1705-1711, 1999. http://dx.doi.org/10.1063/1.479430
  10. V. Carrier, and G. Petekidis, "Nonlinear rheology of colloidal glasses of soft thermosensitive microgel particles", Journal of Rheology, vol. 53, pp. 245-273, 2009. http://dx.doi.org/10.1122/1.3045803
  11. A. Le Grand, and G. Petekidis, "Effects of particle softness on the rheology and yielding of colloidal glasses", Rheologica Acta, vol. 47, pp. 579-590, 2008. http://dx.doi.org/10.1007/s00397-007-0254-z

今天的一些经验教训:对我而言画公仔一定要画出肠!

需求搞了那么长时间还是稀里糊涂,挂网了还说要改,要是别的老板早骂死我了。还好开标前可以改,下学期一开学改了就没事了。

我这个人的模糊思维特别差,搞懂一件事必须“画公仔画出肠”。不从头到尾搞懂的话,我没办法做任何一部分,要么就是乱做。而且我会产生疑问的地方跟常人又不太一样,我不问的话人家都想不到我会有这种疑问,“连这个都要问”、“这都不懂”…等等。所以,以后办事之前一定要问清楚前后逻辑关系。

而且,发现哪怕是别人告诉过我,说一次还不够。往往当下好像懂了。但事后又乱来好像没听过一样。我应该承认在办事方面我是属于比较笨的。讲物理讲化学我一向理解得快,有疑问我逻辑上很快就反应过来了。但是关于人和事我比较迟钝,有疑问我未必当下能反应出来,所以最好要告诉人家一句:容我想想,有疑问再请教。不然人家以为你懂了,都放心给你办。

要人家手把手教,这是最安全的。“自己执生”难一点。如果既要“执生”又要不误事(小错难免),那就要至少对事情的逻辑和各种可能的情况都搞清楚。我是到最后才知道“废标”的具体条件的,那之前的做法能不盲目吗?

别人觉得很简单但对我来说至关重要的问题有:

接下来会发生什么?程序是怎样的?那如果不xxx呢?会不会xxx?各种what if。你不给我画出肠,我就要自己问到出肠为止。