如果我们要对一个周期信号进行Fourier级数分析,那么我们是假定该信号可以表示成
其中
在今天,我们的实验信号基本都已经数字化,在电子计算机中一秒钟不到就做完了一个快速Fourier变换计算。但是在上世纪50~60年代,电子计算机还没发明之前,实验结果本身就可能是通过X-Y记录仪或双笔记录仪画在坐标纸上的。当时的人是怎样对这么一段墨迹进行Fourier级数分析的呢?我们可以看到,Fourier级数的各个系数是一个积分。在那个年代,积分可以使用欧拉法数值求解。在此之前,需要将被积函数进行人工采样(sampling)离散化。因此这是一个很繁琐的任务。
小野木重治(Shigeharu Onogi)可能是日本最早对非线性粘弹性流体的正弦振荡测试结果作谐波分析的研究者。他当时估计就是这么做的[1][2]。
在美国,W. Philippoff很早就开发宽频范围的动态测试仪器。他在1966年发表的文章[3]中,用一个特别构建的可调节模拟计算器,去同时生成一个基频和3倍频的正弦信号,然后作加和。他通过调节这个模拟计算器,凑出与实验结果形状相似的Lissajous曲线,从而得知该曲线的3倍频谐波幅值和相位。
1960年代,恰好是模拟技术的颠峰时期。模拟计算电路能能做很多事情。由流变仪得出的波形信号,可通过相关器与给定的波形比较,输出的结果是与给定波形的内积。这样就可以通过设定参考波形信号,从原始信号中提取相应的分量,从而实现谐波分析。例如,Queen’s Collage机械工程系的Harris和Bogie[4][5]。
1967年,Brenner的林肯实验室报告给出了Cooley和Tukey的快速Fourier变换的Fortran程序。凯斯西储大学化学系的Dodge和Krieger在1971年就用上这个方法来进行谐波分析了[6],正式进入了数字时代。
References
- S. Onogi, T. Masuda, and T. Matsumoto, "Non-Linear Behavior of Viscoelastic Materials. I. Disperse Systems of Polystyrene Solution and Carbon Black", Transactions of the Society of Rheology, vol. 14, pp. 275-294, 1970. http://dx.doi.org/10.1122/1.549190
- T. Matsumoto, Y. Segawa, Y. Warashina, and S. Onogi, "Nonlinear Behavior of Viscoelastic Materials. II. The Method of Analysis and Temperature Dependence of Nonlinear Viscoelastic Functions", Transactions of the Society of Rheology, vol. 17, pp. 47-62, 1973. http://dx.doi.org/10.1122/1.549319
- W. Philippoff, "Vibrational Measurements with Large Amplitudes", Transactions of the Society of Rheology, vol. 10, pp. 317-334, 1966. http://dx.doi.org/10.1122/1.549049
- J. Harris, and K. Bogie, "The experimental analysis of non-linear waves in mechanical systems", Rheologica Acta, vol. 6, pp. 3-5, 1967. http://dx.doi.org/10.1007/BF01968375
- O.E. Ibrahim, "A low-frequency high-speed correlator", Rheologica Acta, vol. 8, pp. 214-220, 1969. http://dx.doi.org/10.1007/BF01984661
- J.S. Dodge, and I.M. Krieger, "Oscillatory Shear of Nonlinear Fluids I. Preliminary Investigation", Transactions of the Society of Rheology, vol. 15, pp. 589-601, 1971. http://dx.doi.org/10.1122/1.549236