Tag Archives: laos

再谈流变学的振荡剪切测试方法

我在2009年,还是博士生的时候,在这里发表过关于Wladimir Philippoff的文章,标题是一个问答:《谁最先对材料施加正弦形变?W. Philippoff。》当时我很有自信,这个答案是对的。

流变学的先驱之一R. Bird和大幅振荡剪切的主要推广者A. Giacomin在2012年发表过一个有关类似问题的文章:谁先构思“复数粘度”的 。答案是另一位学者Andrew Gemant

我前几年曾认真回顾过粘弹性研究的历史。可以说,人们对材料的粘弹性的认识,在最初的时候(Weber 1951)比现在理解得深。因为当时关于万物的一般理论——热力学的认识还处于进行时。所以对材料的粘弹性现象的认识充满了最原始的热力学和测量学思考。今天反倒大部分“流变学学徒”们未必意识到,作为材料的力学响应的粘弹性,在热力学和测量学层面上的具有普遍意义。

尽管相关的理论基础(比如涨落-耗散定理、Green–Kubo关系)到20世纪才完善,但从体系的热力学平衡态性质的测量问题的高度来考虑粘弹性是一开始就具有的。事实上,只要对材料的测量时长短于它回到平衡态所需要的特征时间,那不管什么宏观性质,都会显示相同的松弛谱(当然,要保证线性响应的前提条件)。你既可以选择力学响应、介电响应来测这个谱(测响应函数),也可以选择密度涨落(所造成的散射光强涨落)来测这个谱(测相关函数)。不同测试手段的重要区别仅在它们所对应时间尺度区间。

粘弹性和电学的研究,从一开始就是绑定的。早年测万有引力的常数的主要仪器——扭摆(秤)需要使用一根很细的刚性丝线。静电现象让人联想到类似万有引力那样的超距作用力。库仑用相同的仪器来研究静电力,也得出了形式类似的、以他的名字命名的定律。库仑在原文还首先通过实验确定了固体扭转形变下扭矩与偏转角之间的关系也是近似线性的,并直接使用了这种线性关系来构建扭摆仪器的测量理论。这个灵感当然来自虎克更早发表的工作。库仑的研究就已经看到了粘弹性现象——或者等价地说是热力学平衡态的测量学问题:引入了电荷之后,扭摆先会发生振荡,振幅随时间衰减,最后再近似达到静力学平衡。库仑通过牛顿力学的运动方程推导了这种振荡的频率与丝线半径的关系。关于库仑的研究,我在2012年也写过一篇文章。虽然万有引力的提出比静电现象的研究早,但用扭摆测量万有引力系数的卡文迪许却迟于库仑用于测量和研究静电力。卡文迪许测量万有引力的论文,明确提到了库仑的关于频率与丝线半径关系的研究结果。

我想,类似的现象,虎克也应该已发现。当你把一个重物突然挂在一个弹簧上之后,弹簧必定先振荡,然后幅度逐渐减小,要等一段不短的时间,才达到一个静止的、伸长了的状态。虎克定律描述的,是后面这个静止状态的长度跟重物质量的关系。虎克作为专门研究这个关系的现代意义上的科学家,必意识到并正确地忽略这个现象(比如等足够长的时间再记录测量结果,或比如采取其他手段避免这种振荡)。

扭摆或扭秤所提倡采用的丝线材料是刚性材料,以便材料在应用的条件下满足简单的虎克(对于扭转形变更应该归功于库仑)线性关系。但材料越是接近刚性,上述的这种振荡衰减的时间会越长。因此历史上的扭摆(秤)使用者(多数是电磁学现象研究者),对于这种振荡现象应该不仅仅是熟悉,而且是深有体会。事实上,大部分测量是扭摆法,即不等到扭锤完全静止,而是利用振荡现象本身,观测出振荡波形之后,找出其“直流分量”,既作为静止位置(这默认了振荡总是衰减到其直流分量,但满足这一条是需要一定的前提条件的)。

自Weber改用蚕丝作为扭摆丝线后,看到无法忽略的力学松弛现象,并首次非常正面地研究这个力学松弛之后,粘弹性成为了一个延续到今天的独立课题。Weber的初衷是,为了制作更灵敏的扭摆,需要使用更软的材料作丝线,使得很小的力就能制造很大的偏转,而无需把仪器的体积变得十分巨大。但是这个课题恰好赶上了热力学和统计力学理论的形成时代。克劳修斯、焦尔、开尔文、玻尔兹曼、麦克斯韦……等热力学和统计力学先驱们,全都做过粘弹性问题,把这个问题当作理解统治万物的热力学定律及其与原子论、牛顿力学的调和任务的核心问题之一。这也是为什么我们在流变学或者高分子物理的相关章节会看到部分上述的名字。事实上,Weber本人,以及在Weber之后继续深入研究了扭摆丝线粘弹性的Friedrich Kolrausch,都有十分强的电磁学动机。

所以,力学上的松弛现象跟电学上的松弛,在历史上一开始就是缠绕在一块儿被研究的。因此不难理解,当电报、电话的发明和应用,以及后来的电路和电器的应用(RC电路)形成了对振荡、损耗等问题的理解和复数描述惯例之后,把它们延用到力学的等价现象上,简直是同时代的任何一个研究者都可能相到的。这里的振荡是受迫振荡,与之前提到的扭摆的自由振荡是不同的实验。

1933年W. Philippoff的博士学位论文,已经十分严肃地提出对流体进行振荡形变的一整套方法,特别是他搭建了电器化的仪器(测量的原始信号是电信号)——而非扭摆(秤)这种19世纪以前的纯力学仪器(测量的原始信号是位移)——来实现这种测量。A. Gemant研究兴趣就是粘弹性。他能提出“复数粘度”这种概念,W. Philippoff——以及同时代的其他工程师们——未必就提不出。再加上A. Gemant提出复数粘度的论文是1935年,而W. Philippoff想到用振荡形变去测量流体是在1933年以前。因此公平起见,更应该这么说:W. Philippoff、A. Gemant是最早(1930年代)主粘弹性现象的振荡测试及复数描述的两位科学家。谁先杜撰“复数粘度”这个词,显得比较次要。

所以,我仍然可以说,我在2009年的文章标题,不仅仍然成立,而且是比A. Giacomin在2012年文章的标题更值得关心的一个问题。

FrieslandCampina研究论文引用了我

我总结某本科生实验凑出来的一篇论文,被FrieslandCampina的一篇论文引用了,co-author还有G. McKinley。

我写论文的时候,引用他人工作总是为了如何一句话总结纠结很久。于是,看别人怎么一句话总结自己都觉得是拼凑的工作是很有趣的。

FrieslandCampina是个荷兰乳业公司我之前都没听说过,查了一下国内叫“荷兰皇家菲仕兰”。

为什么做LAOS?

本文来自我最近对一个邮件的回复,觉得有普遍性。

用LAOS研究复杂流体的研究很多,但有目的地使用它的很少。LAOS本身的新奇潮流现在也过了。所以我们必须问,LAOS结果意味着什么?为什么要看LAOS结果?

首先LAOS测试(相比于SAOS)本身就是从非线性粘弹性的出现来划定的,也就是说做LAOS就是去看非线性粘弹性。所以原问题就转化为我们为什么要看非线性粘弹性。

如果说到非线性粘弹性,那研究方法就不止LAOS。阶跃应变、阶跃应变速率、拉伸流变,都是典型的非线性粘弹性测试,所以又要问,看非线性粘弹性,为什么要特别看LAOS?

我个人的观点是,以上问题都没有必然答案。很多时候其实没什么理由去看它的非线性粘弹性;很多时候要看非线性粘弹性也没什么理由特别地去看LAOS。关键要看你要研究什么科学问题,不是为测流变而测流变。

我从建设性的角度,给出几个可能特别要用LAOS研究的理由,看你的研究课题是否采用,但第一个基本问题(为什么要看非线性粘弹性)仍然需要确定。

  1. LAOS相比于其他非线性粘弹性的方法的特点是使用了振荡模式,这除了在数学上便于引入Fourier变换等工程数学工具之外,对于流变学主要是它实现了Deborah数和Weissenberg数分离,即应变的大小和应变的速率分别控制,而不像其他连续形变方式这两者是耦合在一起的。如果你想做LAOS是因为这一特点,那意味着你想看分别地看样品的粘弹性是否专门依赖于形变大小、还是专门依赖于形变速率,还是兼而有之。这也是非线性粘弹性本构模型关心的话题。非线性粘粘弹性本构模型的设计重点之一就是其记忆函数是依赖 应变张量、还是应变率张量,还是二者兼有。
  2. LAOS使用振荡模式又实现了区分循环内(intra-cycle)和循环间(inter-cycle)力学性质。做连续形变是看不到这两类性质的。这两类性质能进一步区分不同的样品。例如,连续形变下同样是应变硬化的材料,在LAOS下虽然都表现为循环内应化(intra-cycle strain hardening),但有的表现为循环间硬化(inter-cycle strain hardening),有的表现为循环间软化(~ softening),不做LAOS区分不了这两类行为。如果你想做LAOS是因为这一特点,那意味着你设想循环内/间行为能够说明你要研究的具体问题(如分子运动等)。

至于以往流行的一些LAOS相关参数如高次谐波、GMGL等,只是早期LAOS建立方法学阶段提出的尝试性参数,其物理意义尚待理论建立,所以不适合应用于具体问题的研究(但却是跟风报道最多的)。所以,如果LAOS的以上两个特点对你没什么用,你就不必要做LAOS。

抛开“你要研究什么”这个问题,就讨论你要做某种复杂流体的非线性粘弹性,我也建议不要做剪切(拖曳流),因为这些体系也许弹性效应非常明显,剪切稍微剧烈法向力就很大,导致挤出、破裂;又或者容易产生不均匀剪切场(如滑移、剪切带等),这都导致数据不可用。想看非线性粘弹性,做拉伸流会更好,当然仪器是否具备另说了。