Tag Archives: microrheology

惯量与粘弹性

最近为了搞清楚仪器的测量极限,和学生一起考虑了一通仪器惯量的问题。结果这一考虑就是几个月。

应力控制型旋转流变仪的原理是:马达驱动转子转动,样品被转子剪切,转子的角位移被记录下来。流变学信息就从马达施加的转矩与转子的角位移之间的关系计算。这个过程当然无法避免转子本身的转动惯量。由于转动惯量只跟转动加速度有关,加速度为零时是没有惯量的,因此稳态粘度测试是不受转子惯量影响的。但是在瞬态测试中,转子的惯量就很重要了。如果是振荡剪切测试,哪怕到了稳态,加速度也是时时刻刻都不为零的。所幸的是,对于小幅振荡剪切的稳态结果,惯量的扣除很简单,只是测量结果的好坏对信噪比的要求高了。对于蠕变,惯量的影响主要应力刚启动的短时间之内。对于粘弹性样品,这部分时间内的响应是样品粘弹性与转子惯量效应耦合之后的结果。大部分研究都预设一种粘弹性模型去拟合这部分响应的实验数据。如果想不依赖于既有模型,直接从实验数据提取出松弛时间谱,可以应用从蠕变到动态模量的变换方法(它们之间是单边Fourier变换的关系),然后从转换得到的动态模量中扣除惯量,可以证明对于这种情况惯量的扣除仍然是简单的公式。K. S. Cho最近证明了[1],忽略噪音和惯量效应,仅考虑同样有限的实验时间尺度下,做振荡扫频不如做蠕变信息量大。有趣的是,噪音和惯量效应会在多大程度上影响这一差别。考虑到噪音和实验时间的有限性,蠕变到动态模量的转换的数值算法还需要有很多实际的考虑,在Cho这篇论文里的Introduction里对这方面工作也作了很全面的回顾。另外,Baravian和Quemada提出了一种连续阶跃应力的方法来获得近似无惯量影响的蠕变响应[2]。这一方法看上去像是在数值上相当于频域的扣除,感觉这一离散的阶跃趋近连续的极限时就会是精确的样品响应。但是Baravian和Quemada只给出了简单粘弹性模型的解,这一方法对于一般性的粘弹性样品具体意味着什么,以及噪音的影响等还需要推导。

另一个学术上的兴趣就是,不去考虑把蠕变响应转换成动态模量,而是关心这个蠕变响应本身的一般表达式。不失一般性,任意粘弹性材料的松弛时间谱可用一Prony级数来表示。因此含转子惯量效应的蠕变测试响应就应该要能由Prony级数的各项系数来表示。有趣的是,在粒子示踪微流变测量中,粒子运动惯量对均方位移响应的影响与流变仪仪器惯量的问题十分相似。对于同一个样品,去流变仪上做蠕变,需要解仪器转子的第二类Volterra积分方程;粒子在此样品中的热运动,需要解粒子的广义朗之万方程。这两个数学问题几乎是一样的。前文提到的针对噪音和实验时间有限性的很多数值方法也是可以通用的。粘弹性介质与粒子之间的friction kernel和粘弹性样品回馈给流变仪转子运动的粘弹性kernel之间的一般关系,也很早就由Zwanzig给出[3]。以现有的基础,完全可以认真地给出一个微流变与宏观流变在一般粘弹性情况下的严格对应理论。

References

  1. K.S. Cho, "Which is more informative between creep and relaxation experiments?", Korea-Australia Rheology Journal, vol. 29, pp. 79-86, 2017. http://dx.doi.org/10.1007/s13367-017-0010-6
  2. C. Baravian, and D. Quemada, "Correction of instrumental inertia effects in controlled stress rheometry", The European Physical Journal Applied Physics, vol. 2, pp. 189-195, 1998. http://dx.doi.org/10.1051/epjap:1998183
  3. R. Zwanzig, and M. Bixon, "Hydrodynamic Theory of the Velocity Correlation Function", Physical Review A, vol. 2, pp. 2005-2012, 1970. http://dx.doi.org/10.1103/PhysRevA.2.2005

Probe microrheology的问题

我正在做微流变,往样品里添加probe particles,通过video particle tracking(VPT)方法得到他们的热运动,从而反推样品的dynamics。关于这个反推过程的认真讨论还不多。

一个简单的做法已经众所周知。通过generalized Stokes-Einstein relation (GSE),可以从probe particle的均方位移来计算复数剪切模量。但这一做法的前提也很严格,要求在粒子的尺度样品是均匀和各向同性的。也就是说,通过GSE计算的剪切模量是bulk的性质。而我们希望做微流变的目的往往是去探索偏理宏观bulk的行为,也就往往是GSE不适用的情况。这时,我们要重新问:我们通过微流变技术去研究复杂流体的目的是什么?仅仅是另一种样量用量较少的流变学方法吗?我想更有价值的应该是去研究复杂流体的内部动态不均匀性,研究宏观流动和介观结果之间的关系,所以微流变技术的真正优势应该在于GSE不适用的情况。

VPT技术更多的用于直接track研究对象。例如研究对象本身就是胶体悬浮液,于是track下整个视场内的所有粒子系综的哈密顿量,从而得到各种相关函数。而在probed microrheology中我们track的是probes,要研究的对象则是probes所在的medium。我们也可以说,得到了视场内所有probes的哈密顿量。可是,在GSE不适用的情况下,probe粒子的dynamics如何反映其medium的dynamics呢?我想,也许仿胶胶体悬浮液的做法,仍然对probes的系综进行分析,得到各种相关函数,再去思考probe的关联尺度跟medium之间的定量关系。

于是,我面临着相关函数的计算问题。我之前没有意料到,n点相关函数的计算量是如此之巨大。例如要求N个量的二点相关,就需要O(N2)的计算量。我在网上搜索了一下,有一个叫bond probagation的算法,可以把计算量减小到O(N3/2),另外还有一个基于KD-tree的算法。这些资料都太偏计算机科学了,实在看不懂,只好老老实实地去遍历所有NCn组合。为了表征动态不均匀性,我要计算的是4点相关函数,而且还涉及一系列probe length,样品还有演化时间。在MATLAB尽可能使用矩阵计算之后,仍然需要6个嵌套循环。

这就难怪,为什么4点相关函数的实验结果报道比较少,大多数都是直接报导4点极化率χ4的结果,因为后者是平均量,已经对相关距离进行体积积分了,只表征时间方差。可是,这样表征的就不是空间不均匀性了,不知道为什么4点极化率一直被用来表征空间不均匀性的程度。

现在,4点相关函数还在实验室的电脑中计算着,期待看到它的结果。但等待我的思考的是如何map到样品本身的不均匀性上去。

UPDATE:关于为什么4点极化率χ能表示动态的空间不均匀性,在4点相关函数的计算方法这里已经介绍。